
11–7 N E T W O R K F U N C T I O N D E S I G N

Finding andusing a network functionof a given circuit is an s-domain analysisproblem.
An s-domain synthesis problem involves finding a circuit that realizes a given network
function. For linear circuits, an analysis problem always has a unique solution. In
contrast, a synthesis problem may have many solutions because different circuits can
have the same network function. A transfer function design problem involves synthe-
sizing several circuits that realize a given function and evaluating the alternative
designs, using criteria suchas inputor output impedance, cost, andpower consumption.

The design process discussed here begins with a given transfer function TV sð Þ. We
partition this transfer function into a product of simpler functions.

TV sð Þ ¼ TV1 sð ÞTV2 sð Þ � � � TVk sð Þ
We then realize each of these simpler functions using basic circuit modules such as
voltage dividers, inverting amplifiers, and noninverting amplifiers. The overall
transfer function is then achieved by connecting the individual stages in cascade,
as indicated in Figure 11–32.

Of course, this approach assumes that the chain rule applies. In other words, we
must avoid loading when designing the stages in the cascade realization. This is
accomplished by coordinating the input and output impedances of adjacent
stages or using OP AMP voltage followers to isolate the individual stages.

Before turning to examples, we discuss the design of simple one-pole modules
that serve as the building block stages in a cascade design.

F I R S T - O R D E R V O L T A G E - D I V I D E R C I R C U I T D E S I G N

We begin our study of transfer function design by developing a voltage-divider
realization of a first-order transfer function of the form K=ðs þ aÞ. The impedances
Z1ðsÞ and Z2ðsÞ are related to the given transfer function using the voltage-divider
relationship.

TV sð Þ ¼ K

s þ a
¼ Z2 sð Þ

Z1 sð Þ þ Z2 sð Þ (11�26)

To obtain a circuit realization, wemust assign part of the givenTVðsÞ toZ2ðsÞ and the
remainder to Z1ðsÞ. There are many possible realizations of Z1ðsÞ and Z2ðsÞ because
there is no unique way to make this assignment. For example, simply equating the
numerators and denominators in Eq. (11–26) yields

Z2 sð Þ ¼ K and Z1 sð Þ ¼ s þ a � Z2 sð Þ ¼ s þ a � K (11�27)
Inspecting this result, we see that Z2ðsÞ is realizable as a resistance R2 ¼ KVð Þ and
Z1(s) as an inductance L1 ¼ 1Hð Þ in series with a resistance R1 ¼ a � Kð ÞV½ �. The
resulting circuit diagram is shown in Figure 11–33(a). For K ¼ a the resistance R1 can
be replaced by a short circuit because its resistance is zero. A gain restrictionK � a is
necessary because a negative R1 is not physically realizable as a single component.

R1 = 

L = 1

(a) RL design

R2 = K

R = 1

(b) RC design
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1
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1
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FIGURE 11–33 Circuit
realizations of T(s) ¼ K=(s +
a) for K � a.
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FIGURE 11–32 Cascade
connection transfer functions.
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An alternative synthesis approach involves factoring s out of the denominator of
the given transfer function. In this case, Eq. (11–26) is rewritten in the form

TV sð Þ ¼ K=s

1 þ a=s
¼ Z2 sð Þ

Z1 sð Þ þ Z2 sð Þ (11�28)

Equating numerators and denominators yields the branch impedances

Z2 sð Þ ¼ K

s
and Z1 sð Þ ¼ 1 þ a

s
� Z2 sð Þ ¼ 1 þ a � K

s
(11�29)

In this case we see thatZ2ðsÞ is realizable as a capacitance C2 ¼ 1=K Fð Þ andZ1ðsÞ as
a resistance R1 ¼ 1Vð Þ in series with a capacitance C1 ¼ 1= a �Kð ÞF½ �. The resulting
circuit diagram is shown in Figure 11–33(b). For K ¼ a, the capacitance C1 can be
replaced by a short circuit because its capacitance is infinite. A gain restriction K �
a is required to keep C1 from being negative.

As a second design example, consider a voltage-divider realization of the transfer
function Ks= s þ að Þ. We can find two voltage-divider realizations by writing the
specified transfer function in the following two ways:

T sð Þ ¼ Ks

s þ a
¼ Z2 sð Þ

Z1 sð Þ þ Z2 sð Þ (11�30a)

T sð Þ ¼ K

1 þ a=s
¼ Z2 sð Þ

Z1 sð Þ þ Z2 sð Þ (11�30b)

Equation (11–30a) uses the transfer function as given, while Eq. (11–30b) factors s
out of the numerator and denominator. Equating the numerators and denominators
in Eqs. (11–30a) and (11–30b) yields two possible impedance assignments:

Using Eq: 11--30að Þ: Z2 ¼ Ks and Z1 ¼ sþ a � Z2 ¼ 1 � Kð Þs þ a (11�31a)

Using Eq: 11--30bð Þ: Z2 ¼ K and Z1 ¼ 1 þ a

s
� Z2 ¼ 1 � Kð Þ þ a

s
(11�31b)

The assignment in Eq. (11–31a) yields Z2(s) as an inductance L2 ¼ KH and Z1ðsÞ as
an inductance L1 ¼ ð1 � KÞH½ � in series with a resistance R1 ¼ aVð Þ. The assign-
ment in Eq. (11–31b) yieldsZ2ðsÞ as a resistance R2 ¼ KVð Þ andZ1ðsÞ as a resistance
R1 ¼ 1 � Kð ÞV½ � in series with a capacitance C1 ¼ 1=aFð Þ. The two realizations are
shown in Figure 11–34. Both realizations requireK � 1 for the branch impedances to
be realizable and both simplify when K ¼ 1.

D e s i g n E x e r c i s e 11–23
Design an RC circuit to realize the following transfer function

TðsÞ ¼ 200

s þ 1000

A n s w e r : Use the circuit of Figure 11–33(b) withR¼ 1V,C1 ¼ 1250mF, andC2¼ 5000mF.
We will learn how to scale these answers to more practical device values later in this section.

V O L T A G E - D I V I D E R A N D O P A M P C A S C A D E

C I R C U I T D E S I G N

The examples in Figures 11–33 and 11–34 illustrate an important feature of voltage-
divider realizations. In general, we can write a transfer function as a quotient of
polynomials TðsÞ ¼ rðsÞ=qðsÞ. Avoltage-divider realization requires the impedances
Z2 sð Þ ¼ r sð Þ and Z1ðsÞ ¼ qðsÞ � rðsÞ to be physically realizable. A voltage-divider

R = 

L1 = 1 − K

R1 = 1 − K

(a) RL design

L2 = K

R2 = K

(b) RC design

C =
1

α

α

FIGURE 11–34 Circuit
realizations of T(s) ¼ Ks=(s +
a) for K � 1.
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circuit usually places limitations on the gainK. This gain limitation can be overcome
by using an OP AMP circuit in cascade with the divider circuit.

For example, a voltage-divider realization of the transfer function in Eq. (11–26)
requires K � a. When K>a, then TðsÞ is not realizable as a simple voltage divider,
since Z2ðsÞ ¼ s þ a � K requires a negative resistance. However, the given transfer
function can be written as a two-stage product:

TvðsÞ ¼ K

s þ a
¼ K

a

� �
|{z}
first

stage

a

s þ a

� �
|fflfflfflffl{zfflfflfflffl}
second

stage

When K>a, the first stage has a positive gain greater than unity. This stage can be
realized using a noninverting OPAMP circuit with a gain of R1 þ R2ð Þ=R1. The first-
stage design constraint is

K

a
¼ R1 þ R2

R1

ChoosingR1 ¼ 1V requires thatR2 ¼ ðK=aÞ � 1. AnRC voltage-divider realization
of the second stage is obtained by factoring an s out of the stage transfer function.
This leads to the second-stage design constraint

a=s

1 þ a=s
¼ Z2 sð Þ

Z1 sð Þ þ Z2 sð Þ
Equating numerators and denominators yields Z2ðsÞ ¼ a=s and Z1ðsÞ ¼ 1.
Figure 11–35 shows a cascade connection of a noninverting first stage and the
RC divider second stage. The chain rule applies to this circuit, since the first stage has
an OP AMP output. The cascade circuit in Figure 11–35 realizes the first-order
transfer function K= s þ að Þ for K>a, a gain requirement that cannot be met by the
divider circuit alone.

D e s i g n E x e r c i s e 11–24
Design an active RC circuit to realize the following transfer function

TðsÞ ¼ 2000

s þ 1000

A n s w e r : Use the circuit shown in Figure 11–35. The OPAMP stage has a gain of 2 by
making both resistors equal. Choose the components in the second stage voltage divider so
that R ¼ 1 V and C ¼ 1000 mF. We will leam how to scale these answers to more practical
device values later in this section.

D e s i g n E x e r c i s e 11–25
Design an active RL circuit to realize the following transfer function

TðsÞ ¼ 2000

s þ 1000

A n s w e r : Use the circuit shown in Figure 11–35. The OPAMP stage has a gain of 2 by
making both resistors equal. In the second stage, replace the resistor with an inductor and
replace the capacitor with a resistor. Let the components in the second stage voltage
divider be R ¼ 1 kV and L ¼ 1 H.

+

− 1

2nd stage

1
αK

α −11

1st stage

FIGURE 11–35 Circuit
realization of T(s) = K=(s + a)
for K > a.
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D E S I G N E X A M P L E 1 1 – 2 0

Design a circuit to realize the following transfer function using only resistors,
capacitors, and OP AMPs:

TV sð Þ ¼ 3000s

s þ 1000ð Þ sþ 4000ð Þ

SOLUTION:
The given transfer function can be written as a three-stage product.

TvðsÞ ¼
�

K1

s þ 1000|fflfflfflfflffl{zfflfflfflfflffl}
�

first
stage

½ K2|{z}�
second
stage

�
K3s

s þ 4000|fflfflfflfflffl{zfflfflfflfflffl}
�

third
stage

where the stage gains K1, K2, and K3 have yet to be selected. Factoring s out of the
denominator of the first-stage transfer function leads to an RC divider realization:

K1=s

1 þ 1000=s
¼ Z2 sð Þ

Z1 sð Þ þ Z2 sð Þ
Equating numerators and denominators yields

Z2ðsÞ ¼ K1=s and Z1ðsÞ ¼ 1 þ ð1000 � K1Þ=s
The first stage Z1ðsÞ is simpler when we select K1 ¼ 1000. Factoring s out of the
denominator of the third-stage transfer function leads to an RC divider realization:

K3

1 þ 4000=s
¼ Z2ðsÞ

Z1ðsÞ þ Z2ðsÞ
Equating numerators and denominators yields

Z2ðsÞ ¼ K3 and Z1ðsÞ ¼ 1 � K3 þ 4000=s

The third stage Z1ðsÞ is simpler when we selectK3 ¼ 1. The stage gains must meet the
constraintK1 � K2 � K3 ¼ 3000 since the overall gain of the given transfer function is
3000. We have selected K1 ¼ 1000 and K3 ¼ 1, which requires K2 ¼ 3. The second
stage must have a positive gain greater than 1 and can be realized using a noninverting
amplifier with K2 ¼ ðR1 þ R2Þ=R1 ¼ 3. Selecting R1 ¼ 1V requires that R2 ¼ 2V.

Figure 11–36 shows the three stages connected in cascade. The chain rule applies
to this cascade connection because the OPAMP in the second stage isolates the RC
voltage-divider circuits in the first and third stages. The order of the first and
third stages can be swapped in this design without consequence. The circuit in
Figure 11–36 realizes the given transfer function but is not a realistic design because
the values of resistance and capacitance are impractical. For this reason we call this
circuit a prototype design. We will shortly discuss how to scale a prototype to obtain
practical element values.

n3rd stage

+

−

2nd stage

1

1

1
40001

1000
1

2

1st stage

FIGURE 11–36

584 C H A P T E R 1 1 NETWORK FUNCTIONS



D e s i g n E x e r c i s e 11–26
Design a circuit to realize the following transfer function using only resistors, capacitors,
and no more than one OP AMP.

TV sð Þ ¼ 106

s þ 103ð Þ2

A n s w e r : Figure 11–37 shows one possible prototypical solution.

I N V E R T I N G O P A M P C I R C U I T D E S I G N

The inverting OPAMP circuit places fewer restrictions on the form of the desired
transfer function than does the basic voltage divider. To illustrate this, we will
develop two inverting OPAMP designs for a general first-order transfer function of
the form

TV sð Þ ¼ �K
s þ g

s þ a

The general transfer function of the inverting OP AMP circuit is �Z2ðsÞ=Z1ðsÞ,
which leads to the general design constraint

�K
s þ g

s þ a
¼ � Z2 sð Þ

Z1 sð Þ (11�32)

The first design is obtained by equating the numerators and denominators in
Eq. (11–32) to obtain the OP AMP circuit impedances as Z2ðsÞ ¼ Ks þKg and
Z1ðsÞ ¼ s þ a. Both of these impedances are of the form Ls þ R and can be realized
by an inductance in series with a resistance, leading to the design realization in
Figure 11–38(a).

A second inverting OP AMP realization is obtained by equating Z2ðsÞ in
Eq. (11–32) to the reciprocal of the denominator and equatingZ1ðsÞ to the reciprocal
of the numerator. This assignment yields the impedances Z1ðsÞ ¼ 1= Ksþ Kgð Þ and
Z2ðsÞ ¼ 1= sþ að Þ. Both of these impedances are of the form 1=ðCsþGÞ, where Cs is
the admittance of a capacitor andG is the admittance of a resistor. Both impedances
can be realized by a capacitance in parallel with a resistance. These impedance
identifications produce the RC circuit in Figure 11–38(b).

Because it has fewer restrictions, it is often easier to realize transfer functions
using the inverting OP AMP circuit. To use inverting circuits, the given transfer
function must require an inversion or be realized using an even number of inverting
stages. In some cases, the sign in front of the transfer function is immaterial and the
required transfer function is specified as �TVðsÞ. Caution: The input impedance of
an inverting OP AMP circuit may load the source circuit.

3rd stage

+

−

2nd stage

1 1

1
1000

1
1000

1st stage

V2(s)

+

−

V1(s)

+

−

FIGURE 11–37
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D e s i g n E x e r c i s e 11–27
Design an active RC prototype circuit to realize the following transfer function

TðsÞ ¼ �100
s þ 50

s þ 100

A n s w e r : See Figure 11–39.

D E S I G N E X A M P L E 1 1 – 2 1

Design a circuit to realize the transfer function given in Example 11–20 using
inverting OP AMP circuits.

SOLUTION:
The given transfer function can be expressed as the product of two inverting transfer
functions:

TV sð Þ ¼ 3000s

s þ 1000ð Þ sþ 4000ð Þ ¼
�
� K1

sþ 1000|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�

first stage

�
� K2s

s þ 4000|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�

second stage

where the stage gains K1 and K2 have yet to be selected. The first stage can be
realized in an inverting OP AMP circuit since

� K1

s þ 1000
¼ � K1=1000

1 þ s=1000
¼ �Z2 sð Þ

Z1 sð Þ

+

−

1α Kγ K

(a) RL design

+

−

1

K

(b) RC design
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FIGURE 11–38 Inverting OP
AMP circuit realizations of
T(s) ¼ �K(s þ g)=(s þ a).
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Equating the Z2(s) to the reciprocal of the denominator and Z1(s) to the reciprocal
of the numerator yields

Z2 ¼ 1

1 þ s=1000
and Z1 ¼ 1000=K1

The impedanceZ2(s) is realizable as a capacitance C2 ¼ 1=1000Fð Þ in parallel with
a resistance R2 ¼ 1Vð Þ and Z1(s) as a resistance R1 ¼ð 1000=K1VÞ. We select K1 ¼
1000 so that the two resistances in the first stage are equal. Since the overall gain
requires K1 � K2 ¼ 3000, this means that K2 ¼ 3. The second-stage transfer
function can also be produced using an inverting OP AMP circuit:

� 3s

s þ 4000
¼ � 3

1 þ 4000=s
¼ �Z2 sð Þ

Z1 sð Þ

Equating numerators and denominators yields Z2ðsÞ ¼ R2 ¼ 3 and Z1ðsÞ ¼
R1 þ 1=C1s ¼ 1 þ 4000=s.

Figure 11–40 shows the cascade connection of the RC OP AMP circuits that
realize each stage. The overall transfer function is noninverting because the
cascade uses an even number of inverting stages. The chain rule applies here since
the first stage has an OPAMP output. The circuit in Figure 11–40 is a prototype
design because the values of resistance and capacitance are impractical.

n

D e s i g n E x e r c i s e 11–28
Design a circuit to realize the following transfer function using only resistors, capacitors,
and no more than one OP AMP.

TV sð Þ ¼ �106

s þ 103ð Þ2

A n s w e r : Figure 11–41 shows one possible prototypical solution.
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FIGURE 11–41
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M A G N I T U D E S C A L I N G

The circuits obtained in Examples 11–20 and 11–21 are called prototype designs
because the element values are outside of practical ranges. The allowable ranges
depend on the fabrication technology used to construct the circuits. For example,
monolithic integrated circuit (IC) technology limits capacitances to a few hundred
picofarads, and inductors are difficult to manufacture on ICs. An OPAMP circuit
should have a feedback resistance greater than 1 kV to keep the output current
demand within the capabilities of general-purpose OP AMP devices. Other tech-
nologies and applications place different constraints on element values. For example,
the power industry, where physical size is of less importance, uses devices with much
larger values than the electronics industry.

There are no hard and fast rules here, but, roughly speaking, an electronic circuit
is probably realizable by some means if its passive element values fall in the ranges
shown in the tables on the inside rear cover, with the caveat that OPAMP circuits
generally use Rs > 1 kV.

These are:

Capacitors4: 1 pF to 10,000 mF

Inductors5: 10 nH to 10 mH

Resistors6: 10 V to 10 MV.

The important idea here is that circuit designs like Figure 11–40 are impractical
because 1-V resistors are too small for OPAMP circuits and 1-mF capacitors are too
large physically.

It is often possible to scale the magnitude of circuit impedances so that the
element values fall into practical ranges. The key is to scale the element values in a
way that does not change the transfer function of the circuit. Multiplying the
numerator and denominator of the transfer function of a voltage-divider circuit
by a scale factor km yields

TV sð Þ ¼ km
km

Z2 sð Þ
Z1 sð Þ þ Z2 sð Þ ¼ kmZ2 sð Þ

kmZ1 sð Þ þ kmZ2 sð Þ (11�33)

Clearly, this modification does not change the transfer function but scales each
impedance by a factor of km and changes the element values in the following way:

Rafter ¼ kmRbefore Lafter ¼ kmLbefore Cafter ¼ Cbefore

km
(11�34)

Equation (11–34) was derived using the transfer function of a voltage-divider circuit.
It is easy to show that we would reach the same conclusion if we had used the transfer
functions of inverting or noninverting OP AMP circuits.

In general, a circuit is magnitude scaled by multiplying all resistances, multiplying
all inductances, and dividing all capacitances by a scale factor km. The scale factor
must be positive, but can be greater than or less than 1. Different scale factors can be
used for each stage of a cascade design, but only one scale factor can be used for each
stage. These scaling operations do not change the voltage transfer function realized
by the circuit.

4Recent innovations in dielectrics have enabled a large new class of electronic double-layer
capacitors (EDLC) or supercapacitors with capacitances up to 5000 F. These devices are still
relatively large for small electronic applications.
5Inductors up to 10 H, also called chokes, are possible but are quite large.
6Resistors are manufactured outside this range but are used only in specialty applications.
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Our design strategy is first to create a prototype circuit whose element values may
be unrealistically large or small. Applying magnitude scaling to the prototype
produces a design with practical element values. Sometimes there may be no scale
factor that brings the prototype element values into a practical range. When this
happens, we must seek alternative realizations because the scaling process is telling
us that the prototype is not a viable candidate.

E X A M P L E 1 1 – 2 2

Magnitude scale the circuit in Figure 11–40 so all resistances are at least 10 kV and all
capacitances are less than 1 mF.

SOLUTION:
The resistance constraint requires kmR� 104 V. The smallest resistance in the
prototype circuit is 1 V; therefore, the resistance constraint requires km � 104.
The capacitance constraint requires C=km � 10�6 F. The largest capacitance in
the prototype is 10�3 F; therefore, the capacitance constraint requires km � 103.
The resistance condition on km dominates the two constraints. Selecting km ¼ 104

produces the scaled design in Figure 11–42. This circuit realizes the same
transfer function as the prototype in Figure 11–40 but uses practical element
values.

n

E x e r c i s e 11–29
Select a magnitude scale factor for each stage in Figure 11–36 so that both capacitances are
0.01 mF and all resistances are greater than 10 kV.

A n s w e r : km ¼ 105 for the first stage; km ¼ 104 for the second stage; km ¼ 0:25� 105 for
the third stage.

E x e r c i s e 11–30
Select a magnitude scale factor for the OP AMP circuit in Figure 11–39.

A n s w e r : km ¼ 108, any larger and the feedback resistor becomes too large, any smaller
and the input capacitor becomes too large.

S E C O N D - O R D E R C I R C U I T D E S I G N

An RLC voltage divider can also be used to realize second-order transfer functions.
For example, the transfer function

TV sð Þ ¼ K

s2 þ 2zv0s þ v2
0

+

−

1st stage 2nd stage

10 kΩ
10 kΩ

10 kΩ0.025 μF 30 kΩ

0.1 μF

+

−

FIGURE 11–42
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can be realized by factoring s out of the denominator and equating the result to the
voltage-divider input-output relationship:

TV sð Þ ¼ K=s

s þ 2zv0 þ v2
0=s

¼ Z2 sð Þ
Z1 sð Þ þ Z2 sð Þ

Equating numerators and denominators yields

Z2 sð Þ ¼ K

s
and Z1 sð Þ ¼ s þ 2zv0 þ v2

0 � K

s

The impedanceZ2(s) is realizable as a capacitance C2 ¼ 1=K Fð Þ andZ1(s) as a series
connection of an inductance L1 ¼ 1Hð Þ, resistance R1 ¼ 2zv0 Vð Þ, and capacitance
C1 ¼ 1= v2

0 � K
� �

F
� �

. The resulting voltage-divider circuit is shown in Figure 11–43(a).
The impedances in this circuit are physically realizable when K � v2

0. Note that
the resistance controls the damping ratio z because it is the element that dissipates
energy in the circuit. Also note that if K ¼ v2

0, then the capacitor C1 is replaced by a
short circuit.

When K>v2
0, we can partition the transfer function into a two-stage cascade of

the form

TV sð Þ ¼
�

K

v2
0|{z}
�

first

stage

�
v2
0=s

sþ 2zv0 þ v2
0=s|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

�

second stage

The first stage requires a positive gain greater than unity and can be realized using a
noninverting OPAMP circuit. The second stage can be realized as a voltage divider
with Z2ðsÞ ¼ v2

0=s and Z1ðsÞ ¼ s þ 2zv0. The resulting cascade circuit is shown in
Figure 11–43(b).

D E S I G N E X A M P L E 1 1 – 2 3

Find a second-order realization of the transfer function given in Example
11–20.

SOLUTION:
The given transfer function can be written as

TV sð Þ ¼ 3000s

sþ 1000ð Þ s þ 4000ð Þ ¼ 3000s

s2 þ 5000s þ 4 � 106

L1 = 1

R1= 2ζω0

(a) Voltage divider design K ≤ ω0

C1 = 1

C2 = K

ω0
2
 − K

1

2
First stage Second stage

1+

−
2ζω0

ω0
2

1

ω0
2

K1 −1

(b) Cascade design K > ω0 2

FIGURE 11–43 Second-order
circuit realizations.
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Factoring s out of the denominator and equating the result to the transfer function of
a voltage divider gives

3000

s þ 5000 þ 4 � 106=s
¼ Z2 sð Þ

Z1 sð Þ þ Z2 sð Þ
Equating the numerators and denominators yields

Z2 sð Þ ¼ 3000 and Z1 sð Þ ¼ s þ 2000 þ 4 � 106=s

Both of these impedances are realizable, so a single-stage voltage-divider design is
possible. The prototype impedance Z1(s) requires a 1-H inductor, which is a bit large.
A more practical value is obtained using a scale factor of km ¼ 0:1. The resulting
scaled voltage divider circuit is shown in Figure 11–44. n

D e s i g n E x e r c i s e 11–31
Design a second-order circuit to realize the following transfer function:

TVðsÞ ¼ 106

s þ 103ð Þ2

A n s w e r : Figure 11–45 shows one possible solution.

D E S I G N E V A L U A T I O N S U M M A R Y

Examples 11–20, 11–21, and 11–23 show three different ways to realize the transfer
function

TV sð Þ ¼ 3000s

s þ 1000ð Þ s þ 4000ð Þ
This illustrates that a design requirement can have many solutions. Selecting the best
design from among the alternatives involves additional criteria such as element
count, power requirements, and output loading effects.

The element counts for each design are shown in Table 11–1. On a pure element-
count basis, the RLC divider in Figure 11–44 in the best design. However, inductors
have some serious drawbacks. They are heavy and lossy in low-frequency applica-
tions and are not easily fabricated in integrated circuit form. Fortunately, inductors
are not essential to transfer function design, as shown by the two RC OP AMP
designs.

Power requirements: The two RC OP AMP designs require external dc power
supplies. The voltage divider cascade in Figure 11–36 requires less power since it uses
only one OPAMP, compared with the two-OP-AMP inverting cascade. Thus, power
requirements would favor the one-OP-AMP circuit over the two-OP-AMP circuit.

2 kΩ 1 H

1 μF v2(t)

+

−

v1(t)

+

−

FIGURE 11–45

200 Ω 100 mH 2.5 μF

300 Ω

FIGURE 11–44

T A B L E 11–1

NUMBER OF

EXAMPLE FIGURE DESCRIPTION R L C OP AMP

11–20 11–36 RC voltage-divider cascade 4 0 2 1

11–21 11–40 RC inverting cascade 4 0 2 2

11–23 11–44 RLC voltage divider 2 1 1 0
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Output loading: The output impedance of the design is important if the circuit
must drive a finite load of, say, 1 kV. The resulting loading effects could defeat the
basic purpose of the circuit by changing its transfer function. Output loading
considerations favor the inverting cascade in Figure 11–40 because it has an OP
AMP output that has zero output impedance.

A design problem involves more than simply finding a prototype that realizes a
given transfer function. In general, the first step in a design problem involves
determining an acceptable transfer function, one that meets performance require-
ments such as the characteristics of the step or frequency response. In other words,
we must first design the transfer function and then design several circuits that realize
the transfer function. To deal with transfer function design we must understand how
performance characteristics are related to transfer functions. The next two chapters
provide some background on this issue.

D E S I G N A N D E V A L U A T I O N E X A M P L E 1 1 – 2 4

Given the step response g tð Þ ¼ � 1 þ 4e�500t
� �

u tð Þ,
(a) Find the transfer function T(s).
(b) Design two RC OPAMP circuits that realize the T(s) found in part (a).
(c) Evaluate the two designs on the basis of element count, input impedance, output

impedance.

SOLUTION:
(a) The transform of the step response is

GðsÞ ¼ �L 1 þ 4e�500t
� �

u tð Þ	 
 ¼ � 1

s
þ 4

s þ 500

� �
¼ � 5s þ 500

s s þ 500ð Þ
and the required transfer function is

T sð Þ ¼ H sð Þ ¼ sG sð Þ ¼ � 5s þ 500

s þ 500

(b) The first design uses an inverting OPAMP configuration. Using the minus sign
on the transfer function T(s) and factoring an s out of the numerator and
denominator yield

T sð Þ ¼ � 5 þ 500=s

1 þ 500=s
¼ �Z2 sð Þ

Z1 sð Þ
Equating numerators and denominators yields Z2ðsÞ ¼ 5 þ 500=s and
Z1ðsÞ ¼ 1 þ 500=s. The impedance Z2(s) is realizable as a resistance
R2 ¼ 5Vð Þ in series with a capacitance C2 ¼ 1=500Fð Þ and Z1(s) as a resistance
R1 ¼ 1Vð Þ in series with a capacitance C1 ¼ 1=500Fð Þ. Using a magnitude scale
factor km ¼ 105 produces circuit C1 in Figure 11–46.

The second design uses a noninvertingOPAMP configuration. Using the plus
sign on the transfer function T(s) and factoring an s out of the numerator and
denominator yield

T sð Þ ¼ 5 þ 500=s

1 þ 500=s
¼ Z1 sð Þ þ Z2 sð Þ

Z1 sð Þ
Equating numerators and denominators yields

Z1 sð Þ ¼ 1 þ 500

s
and Z2 sð Þ ¼ 5 þ 500

s
� Z1 sð Þ ¼ 4

0.02 μF

C1

500 kΩ
0.02 μF

100 kΩ

+

−

10 kΩ
40 kΩ

0.2 μF

C2

+

−

FIGURE 11–46
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The impedance Z1(s) is realizable as a resistance (R1 ¼ 1V) in series with a
capacitance C1 ¼ 1=500Fð Þ and Z2(s) as a resistance R2 ¼ 4Vð Þ. Using a scale
factor of km ¼ 104 produces circuit C2 in Figure 11–46.

(c) Circuit C1 uses one more capacitor than circuit C2. The OPAMP output on both
circuits means that they each have almost zero output impedance. The input
impedance to circuit C2 is very large, because its input is the noninverting input of
the OPAMP. The input impedance of circuit C1 is Z1ðsÞ ¼ kmð1 þ 500=sÞ; hence,
the scale factormust be selected to avoid loading the source circuit. The final design
for circuit C1 in Figure 11–46 uses km ¼ 105, whichmeans that Z1j j> 100kV, which
should be high enough to avoid loading the source circuit. n

E v a l u a t i o n E x e r c i s e 11–32
The following transfer function was realized in different ways in Figures 11–37, 11–41 and
11–45:

TVðsÞ ¼ �106

s þ 103ð Þ2

Compare the various designs in a table similar to Table 11–1. Which would you
recommend if

(a) There was no power available?
(b) There was a desire not to invert the output and to avoid using inductors?
(c) There was a concern about loading at the output?

A n s w e r s :

(a) The RLC circuit in Figure 11–45 requires no power.
(b) The RC voltage-divider cascade in Figure 11–37 does not invert the output and does

not require an inductor.
(c) None of the circuits prevents the possibility of loading at the output. One could add an

OPAMP follower at the output of any of the three solutions to address loading concerns.

D E S I G N E X A M P L E 1 1 – 2 5

Verify that circuit C2 in Figure 11–46 meets its design requirements.

SOLUTION:
One of the important uses of computer-aided analysis is to verify that a proposed
design meets the performance specifications. The circuit C2 in Figure 11–46 is
designed to produce a specified step response

g tð Þ ¼ 1 þ 4e�500t
� �

u tð ÞV
This response jumps from zero to 5 Vat t ¼ 0 and then decays exponentially to 1 Vat
large t. The time constant of the exponential is 1=500 ¼ 2ms, which means that the
final value is effectively reached after about five time constants, or 10 ms.

One can useMATLAB to better visualize the specifications of a circuit design. To
have MATLAB produce the step response, we use the transfer function operator,
tf, as shown in the m-file below. In this example, after we entered the circuit’s
transfer function, we applied the MATLAB function step to plot the desired step
response of the circuit in question.

syms s;

s = tf(‘s’);

H = 5*(s+100)/(s+500);

step (H)
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Figure 11–47 shows the step response of the circuit as plotted by MATLAB. We
have selected two points for reference, namely t ¼ 2ms and t ¼ 4ms.

In Figure 11–48 we have drawn the circuit in OrCAD and stimulated it using the
Time Domain (Transient) analysis function. The Probe response is also shown in the
figure. We have used the Probe cursor to measure the same two points so that a
comparison can be made.

The theoretical values can be also calculated directly from g(t) at the same two points:

gð0:002Þ ¼ 1 þ 4e�500� 0:002 ¼ 2:4715

gð0:004Þ ¼ 1 þ 4e�500� 0:004 ¼ 1:5413

Step Response

Time (sec)

A
m

pl
it

ud
e

0 0.002 0.004 0.006 0.008 0.01 0.012
1

1.5

2

2.5

3

3.5

4

4.5

5

System: H
Time (sec): 0.002
Amplitude: 2.47

System: H
Time (sec): 0.004
Amplitude: 1.54

FIGURE 11–47

FIGURE 11–48 Copyright # Cadence Design Systems, Inc. Used with permission.
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We summarize our results in the following table:

The data show that theory and simulation agree to three significant figures. n

E X A M P L E 1 1 – 2 6A P P L I C A T I O N

The operation of a digital system is coordinated and controlled by a periodic
waveform called a clock. The clock waveform provides a standard timing reference
to maintain synchronization between signal processing results that are generated
asynchronously. Because of differences in digital circuit delays, there must be
agreed-upon instants of time at which circuit outputs can be treated as valid inputs
to other circuits.

Figure 11–49 shows a section of the clock distribution network in an integrated
circuit. In this network the clock waveform is generated at one point and distributed
to other on-chip locations by interconnections that can be modeled as lumped
resistors and capacitors. Clock distribution problems arise when the RC circuit
delays at different locations are not the same. This delay dispersion is called clock
skew, defined as the time difference between a clock edge at one location and the
corresponding edge at another location.

To qualitatively calculate a clock skew, we will find the step responses in the RC
circuit in Figure 11–50. The input VS(s) is a unit step function which simulates the
leading edge of a clock pulse. The resulting step responses VA(s) and VB(s) represent
the clock waveforms at points A and B in a clock distribution network. To find the
step responses, we use the following s-domain node-voltage equations.

NodeA:
2

R
þCs

� �
VA sð Þ � 1

R

� �
VB sð Þ ¼ VS sð Þ

R

NodeB: � 1

R

� �
VA sð Þ þ 1

R
þCs

� �
VB sð Þ¼ 0

TECHNIQUE

TIME (S) HAND CALCULATION MATLAB ORCAD

0.002 2.4715 V 2.47 V 2.4715 V

0.004 1.5413 V 1.54 V 1.5413 V

R R

+
− VS(s) 1

Cs
1

Cs

VA(s) VB(s)

FIGURE 11–50 Two-stage
RC circuit model.

CLK
IN

A C

B D
IC interconnects

E

FIGURE 11–49 Clock distribution network.
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The circuit determinant is

D sð Þ ¼ RCsð Þ2 þ 3 RCsð Þ þ 1

R2
¼ RCs þ 0:382ð Þ RCs þ 2:618ð Þ

R2

which indicates that the circuit has simple poles at s ¼ �0:382=RC and s ¼
�2:618=RC. Using the circuit determinant and a unit step input, we can easily solve
the node equations for VA(s) and VB(s):

VA sð Þ ¼ RCs þ 1

s RCs þ 0:382ð Þ RCs þ 2:618ð Þ

¼ 1

s
� 0:7235

s þ 0:382=RC
� 0:2764

s þ 2:618=RC

VB sð Þ ¼ 1

s RCs þ 0:382ð Þ RCs þ 2:618ð Þ

¼ 1

s
� 1:171

s þ 0:382=RC
þ 0:1710

s þ 2:618=RC

From these we obtain the time-domain step responses as

vA tð Þ ¼ 1 � 0:7235 e�0:382t=RC � 0:2764 e�2:618t=RC

vB tð Þ ¼ 1 � 1:171 e�0:382t=RC þ 0:1710 e�2:618t=RC for t> 0

These two responses are plotted in Figure 11–51. For a unit step input, both
responses have a final value of unity. Using the definition of step response delay time
given in Example 11–12 (time required to reach 50% of the final value), we see that

TDA ¼ 1:06=RC and TDB ¼ 2:23=RC

The delay time skew is
Delay Skew ¼ TDB � TDA ¼ 1:17=RC

The clock distribution problem is not that the RC elements representing the
interconnects produce time delay, but that delays are not all the same. Ideally, digital
devices at different locations should operate on their respective digital inputs at
exactly the same instant of time. Erroneous results may occur when the clock pulse
defining that instant does not arrive at all locations at the same time. Minimizing
clock skew is one of the major constraints on the design of the clock distribution
network in large-scale integrated circuits.

n

1 2 3 4 5

0.5

1

v(t)

1.06 2.23

TDA
Skew

TDB

t
RC

vA(t)
vB(t)

FIGURE 11–51 Step
responses showing clock skew.
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S U M M A R Y
	 A network function is defined as the ratio of the
zero-state response transform to the input trans-
form. Network functions are either driving-point
functions or transfer functions. Network functions
are rational functions of s with real coefficients
whose complex poles and zeros occur in conjugate
pairs.

	 Network functions for simple circuits like voltage and
current dividers and inverting and noninverting OP
AMPs are easy to derive and often useful. Node-
voltage or mesh-current methods are used to find
the network functions for more complicated circuits.
The transfer function of a cascade connection obeys
the chain rule when each stage does not load the
preceding stage in the cascade.

	 The impulse response is the zero-state response of a
circuit for a unit impulse input. The transform of the
impulse response is equal to the network function. The
impulse response contains only natural poles and
decays to zero in stable circuits. The impulse response
of a linear, time-invariant circuit obeys the propor-
tionality and time-shifting properties. The short pulse
approximation is a useful way to simulate the impulse
response in practical situations.

	 The step response is the zero-state response of a
circuit when the input is a unit step function. The
transform of the step response is equal to the network
function times 1/s. The step response contains natural
poles and a forced pole at s ¼ 0 that leads to a dc
steady-state response in stable circuits. The amplitude
of the dc steady-state response can be found by
evaluating the network function at s ¼ 0. The step

response waveform can also be found by integrating
the impulse response waveform.

	 The sinusoidal steady-state response is the forced
response of a stable circuit for a sinusoidal input.
With a sinusoidal input the response transform con-
tains natural poles and forced poles at s ¼ � jv that
lead to a sinusoidal steady-state response in stable
circuits. The amplitude and phase angle of the sinus-
oidal steady-state response can be found by evaluating
the network function at s ¼ jv.

	 The sinusoidal steady-state response can be found
using phasor circuit analysis or directly from the
transfer function. Phasor circuit analysis works best
when the circuit is driven at only one frequency and
several responses are needed. The transfer function
methodworks best when the circuit is driven at several
frequencies and only one response is needed.

	 The convolution integral is a t-domain method relating
the impulse response h(t) and input waveform x(t) to the
zero-state response y(t). Symbolically the convolution
integral is represented by y tð Þ ¼ h tð Þ 
 x tð Þ. Time-
domain convolution and s-domain multiplication
are equivalent; that is, y tð Þ ¼ h tð Þ 
 x tð Þ ¼ L�1 H sð Þf
X sð Þg. The geometric interpretation of t-domain convo-
lution involves four operations: reflecting, shifting, multi-
plying, and integrating.

	 First- and second-order transfer functions can be design-
ed using voltage dividers and inverting or noninverting
OPAMP circuits. Higher-order transfer functions can be
realized using a cascade connection of first- and second-
order circuits. Prototype designs usually require magni-
tude scaling to obtain practical element values.

P R O B L E M S

O B J E C T I V E 1 1 – 1 N E T W O R K F U N C T I O N S

( S E C T S . 1 1 – 1 , 1 1 – 2 )

Given a linear circuit:
(a) Find specified network functions and locate their poles and

zeros.
(b) Select the element values to produce specified poles and

zeros.
See Examples 11–1, 11–2, 11–3, 11–4, 11–5, 11–6, 11–7 and
Exercises 11–1, 11–2, 11–3, 11–4, 11–5, 11–6, 11–7, 11–8.

11–1 Find the driving point impedance seen by the voltage
source in Figure P11–1 and the voltage transfer function
TV(s) ¼ V2(s)/V1(s).

+
−

1/Cs

2R

2R

V2(s)V1(s)

+

−

FIGURE P11–1
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11–2 Find the driving point impedance seen by the voltage
source in Figure P11–2 and the voltage transfer function
TV(s) ¼ V2(s)/V1(s).

Ls

+

−

V1(s) V2(s)
R

2R+
−

FIGURE P11–2

11–3 Find the driving point impedance seen by the voltage
source in Figure P11–3 and the voltage transfer function
TV(s) ¼ V2(s)/V1(s).

+
−

1––
CsLs

R V2(s)V1(s)

+

−

FIGURE P11–3

11–4 Find the driving point impedance seen by the voltage
source in Figure P11–4 and the voltage transfer function
TV(s) ¼ V2(s)/V1(s).

+
−

1––
Cs

Ls

R
V2(s)V1(s)

+

−

FIGURE P11–4

11–5 Find the driving point impedance seen by the voltage
source in Figure P11–5 and the voltage transfer function
TV(s) ¼ V2(s)/V1(s).

+
−

1––
Cs

R

Ls V2(s)V1(s)

+

−

FIGURE P11–5

11–6 Find the driving point impedance seen by the voltage
source in Figure P11–6 and the voltage transfer function
TV(s) ¼ V2(s)/V1(s).

1/Cs

+

−

10R

+

−

+

−

R

V1(s) V2(s)

FIGURE P11–6

11–7 Find the driving point impedance seen by the voltage
source in Figure P11–7 and the voltage transfer function.
TV(s) ¼ V2(s)/V1(s).

1/Cs

+

−

2R

2R
V1(s)

+

V2(s)+
−

FIGURE P11–7

11–8 Find the driving point impedance seen by the voltage
source in Figure P11–8 and the voltage transfer function
TV(s) ¼ V2(s)/V1(s).

+

−

+R2

R3

R1
V2(s)

1/Cs

V1(s)+
−

FIGURE P11–8

11–9 Find the voltage transfer function TV(s) ¼ V2(s)/V1(s) in
Figure P11–9.

+

−

1/Cs

Ls

R

R

V2(s)V1(s)+
−

FIGURE P11–9
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11–10 Find the driving point impedance seen by the voltage
source in Figure P11–10 and the voltage transfer function
TV(s) ¼ V2(s)/V1(s). Insert a follower at A and repeat.

+

−

Ls Ls

R R

V2(s)V1(s)+
−

A

FIGURE P11–10

11–11 Find the voltage transfer function TV(s) ¼ V2(s)/
V1(s) in Figure P11–11. Select values ofR andC so that TV(s)
has a pole at s ¼ �100 krad/s.

+

−

R

+
V2(s)

+
V1(s)

R

1
Cs

FIGURE P11–11

11–12 Find the voltage transfer function TV(s) ¼ V2(s)/
V1(s) in Figure P11–12. Select values of R1, R2, and C so that
TV(s) has a pole at s ¼ �250 krad/s and R2/R1 ¼ 100.

1/Cs

+

−

+

−

+

−

R1 R2

V1(s) V2(s)

FIGURE P11–12

11–13 Find the current transfer function TI(s) ¼ I2(s)/I1(s)
in Figure P11–13. Select values of R and L so that TI(s) has a
pole at s ¼ �377 rad/s.

LsRI1(s)

2R I2(s)

FIGURE P11–13

11–14 Find the voltage transfer function TV(s) ¼ V2(s)/V1(s) of
the cascade connection in Figure P11–14. Locate the poles
and zeros of the transfer function.

10 kΩ
+

+

−

10 kΩ
0.01 μF

10 kΩ

100 kΩ

+

−

0.022 μF

+
v1(t) v2(t)

FIGURE P11–14

11–15 Find the voltage transfer function TV(s) ¼ V2(s)/V1(s) of
the cascade connection in Figure P11–15. Locate the poles
and zeros of the transfer function.

+

−

0.1 μF

0.047 μF
+

−

1 kΩ

10 kΩ

22 kΩ v2(t)

+

−

v1(t)

Z(s)

FIGURE P11–15

11–16 Find the input impedance Z(s) in Figure P11–15.

O B J E C T I V E 1 1 – 2 N E T W O R K F U N C T I O N S , I M P U L S E

R E S P O N S E , A N D S T E P R E S P O N S E S ( S E C T S . 1 1 – 3 ,
1 1 – 4 )
(a) Given a first- or second-order linear circuit, find its impulse

or step response.
(b) Given the impulse or step response of a linear circuit, find

the network functions.
(c) Given the impulse or step response of a linear circuit, find

the response due to other inputs.
See Examples 11–8, 11–9, 11–10, 11–11, 11–12 and Exercises
11–9, 11–10, 11–11, 11–12, 11–13, 11–14.

11–17 Find the impulse response at v2(t) in Figure P11–17. Find
the circuit’s step response.

47 kΩ+
−

+

−0.15 μF

33 kΩ

v1(t) v2(t)

FIGURE P11–17
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11–18 Find v2(t) in Figure P11–18 when v1(t) ¼ d(t). Repeat for
v1(t) ¼ u(t).

25 Ω

100 Ω

+
−

 100 mH

+

−

v1(t) v2(t)

FIGURE P11–18

11–19 Find v2(t) in Figure P11–19 when v1(t) ¼ d(t). Repeat for
v1(t) ¼ u(t).

5 kΩ
+
−

+

−

10 kΩ

0.1 μF

v1(t) v2(t)

FIGURE P11–19

11–20 Find h(t) and g(t) for the circuit in Figure P11–20.

+
− 1 kΩ

1 kΩ 1 H

0.2 μF v2(t)v1(t)

+

−

FIGURE P11–20

11–21 Find h(t) and g(t) for the circuit in Figure P11–21 if
RF ¼ 100 kV.

+

−

0.02 μF

RF+

−
+

−

5 kΩ

v1(t) v2(t)

FIGURE P11–21

11–22 Select an appropriate RF for the circuit of Figure
P11–21 so that the step response of the circuit is g(t) ¼
(10e�1000t � 10) u(t)V.

11–23 Find v2(t) in Figure P11–23 when v1(t) ¼ d(t). Repeat for
v1(t) ¼ u(t).

+

−
100 kΩ

+

−

+

−

50 kΩ

2 μF

v1(t) v2(t)

FIGURE P11–23

11–24 The impulse response of a linear circuit is h(t) ¼
(100e�200t� 100e�1000t)m(t). Find the circuit’s step response
g(t), impulse response transform H(s), step response trans-
form G(s), and the circuit’s transfer function T(s).

11–25 The impulse response of a linear circuit is h(t) ¼ d(t) �
2000e�200t u(t). Find the circuit’s step response g(t), impulse
response transform H(s), step response transform G(s), and
the circuit’s transfer function T(s).

11–26 The step response transform of a linear circuit is G(s) ¼
1000/s(s þ 1000). Find the circuit’s impulse response h(t),
step response g(t), impulse response transformH(s), and the
circuit’s transfer function T(s).

11–27 The step response of a linear circuit is g(t) ¼ 15(e�20kt �
e�30kt)u(t). Find the circuit’s impulse response h(t), impulse
response transform H(s), step response transform G(s), and
the circuit’s transfer function T(s).

11–28 Find h(t) ¼ dgðtÞ
dt when g(t) ¼ (3 � e�10t) u(t). Verify your

answer by first transforming g(t) intoG(s) and findingH(s)¼
sG(s) and then taking the inverse transform ofH(s). Did you
get the same answer?

11–29 The impulse response of a linear circuit is h(t) ¼ 1000
[e�1000t]u(t). Find the output waveform when the input is x(t)
¼ 5tu(t).

11–30 The step response of a linear circuit is g(t) ¼ 0.25[l �
e�150t]u(t). Find the output waveform when the input is v1(t)
¼ [20e�200t]u(t). Use MATLAB to find the Laplace trans-
forms of g(t) and v1(t). Then find V2(s). Finally, use the
inverse Laplace function to find the waveform v2(t) and
plot the results.

11–31 The step response of a linear circuit is g(t) ¼ 10[e�50t cos
200t]u(t). Find the circuit’s impulse response h(t), impulse
response transform H(s), step response transform G(s), and
the circuit’s transfer function T(s).

11–32 The impulse response transform of a linear circuit isH(s)
¼ (s þ 2000)/(s þ 1000). Find the output waveform when the
input is x(t)¼ 5e�1000tu(t). UseMATLAB to find the Laplace
transform of x(t). Then find Y(s). Finally, use the inverse
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Laplace function to find the waveform y(f) and plot the
results.

11–33 The impulse response of a linear circuit is h(t)¼ 20u(t)þ
d(t). Find the output waveform y(t) when the input is x(t) ¼
2[e�20t]u(t).

O B J E C T I V E 1 1 – 3 N E T W O R K F U N C T I O N S A N D T H E

S I N U S O I D A L S T E A D Y - S T A T E R E S P O N S E

( S E C T . 1 1 – 5 )
(a) Given a first- or second-order linear circuit with a

specified input sinusoid, find the sinusoidal steady-state
response.

(b) Given the network function, impulse response, or step
response, find the sinusoidal steady-state response for a
specified input sinusoid.

See Examples 11–13, 11–14, 11–15 and Exercises 11–15, 11–16,
11–17, 11–18.

11–34 The circuit in Figure P11–34 is in the steady state with
v1(t) ¼ 5 cos 1414.21t V. Find v2SS(t). Repeat for v1(t) ¼ 5
cos 1 kt V. And without doing any calculations, repeat for
v1(t) ¼ 5 V.

+
−

100 Ω

20 μF

+

−

25 mH
v1(t) v2(t)

FIGURE P11–34

11–35 The circuit in Figure P11–35 is in the steady state with v1(t)
¼ 10 cos 500t V. Find v2SS(t). Repeat for v1(t) ¼ 10 cos 1 kt V,
and for v1(t) ¼ 10 cos 10 kt V . Where is the pole located?

0.5 μF

+

−

+

−
+

−

1 kΩ 2 kΩ

v1(t) v2(t)

FIGURE P11–35

11–36 The circuit in Figure P11–36 is in the steady state with
v1(t) ¼ 25 cos 2000t V. Find v2SS(t). Repeat for v1(t) ¼ 25 cos
10 kt V . Where are the poles located?

+
−

+

−

10 Ω 50 μF

5 mHv1(t) v2(t)

FIGURE P11–36

11–37 The circuit in Figure P11–37 is in the steady state with
i1(t) ¼ 10 cos 50kt mA, R1 ¼ 100 V, R2 ¼ 400 V, and L ¼
100mH. Find i2SS(t). Repeat for i1(t)¼ 10 cos 5ktmA.Where
is the pole located?

R1

R2 L

i2(t)i1(t)

FIGURE P11–37

11–38 The circuit in Figure P11–38 is in the steady state with
i1(t) ¼ 5 cos 1000t mA, R ¼ 1 kV, L, ¼ 2H, and C ¼ 0.5 mF.
(a) Find i2SS(t).
(b) Verify your results using OrCAD. Use IAC for a source
and note that the current comes out of the negative terminal
(passive sign convention.). The IPRINTelement on the right
side of the figure is an ammeter and it comes from the Special
Library. It has a polarity as indicated by the small’’–’’ on the
element. You should ensure that it will read the correct
current direction. Before you can use the IPRINT element,
it needs to be set up to display the current magnitude and
phase. Double click on the element and in its property editor
place a ‘‘y’’ in AC,MAG, and PHASE boxes. Click theApply
button and close the property editor. To obtain the simula-
tion select AC Sweep/Noise. Set the start frequency and the
stop frequency at 159.15 Hz (1000 rad/s). Place a 1 in Points/
Decade. Run the simulation. Under View, select Output File.
Scroll down until you see the IPRINT output.

IPRINT
C1
0.5u

R1

1k

L1
2H

1

2

I1

5 mAac
0 Adc

0

i1(t)

+
−

i2SS(t)

FIGURE P11–38
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11–39 The circuit in Figure P11–39 is in the steady state with
i1(t) ¼ 10 cos 5000t mA.
(a) Find the steady-state voltage v2SS(t). Repeat for i1(t) ¼ 5
cos 2500t mA.
(b) Verify your answer using OrCAD (see Problem 11–38
for help on OrCAD setup.)

10 kΩ
10 kΩ

v2(t)

+

−

i1(t)

0.02 μF

FIGURE P11–39

11–40 The impulse response transform of a circuit is
HRðsÞ ¼ V2ðsÞ=I1ðsÞ ¼ 5000s=s þ 2500. Find v2SS(t) if it(t) ¼
10 cos 5000t mA. Compare your answer to that found in
Problem 11–39.

11–41 The transfer function of a linear circuit is T(s) ¼ (s+ 100)/
(s þ 10). Find the sinusoidal steady-state output for an input
x(t) ¼ 5 cos 100t.

11–42 The step response of a linear circuit is g(t) ¼ [15e�500t]
u(t). Find the sinusoidal steady-state output for an input x(t)
¼ 5 cos 1000t.

11–43 The step response of a linear circuit is g(t)¼ [2eþ100t]u(t).
Find the sinusoidal steady-state output for an input x(t) ¼
5 cos 500t.

11–44 The impulse response of a linear circuit is h(t) ¼
[500e�5000t]u(t) � d(t). Find the sinusoidal steady-state out-
put for an input x(t) ¼ 10 cos 10 kt.

11–45 The impulse response of a linear circuit is h(t) ¼ 800
[e�100t � e�400t]u(t). Use MATLAB to find the sinusoidal
steady-state output for an input x(t) ¼ 8 cos 200t. Use
MATLAB to plot y(t).

11–46 The step response of a linear circuit is g(t) ¼ [� e�60t sin
80t]u(t). Find the sinusoidal steady-state response for an
input x(t) ¼ 20 cos 100t.

11–47 The step response of a linear circuit is g(t) ¼ [1 �
20te�10t]u(t). Find the sinusoidal steady-state response for
an input x(t) ¼ 50 cos 10t.

O B J E C T I V E 1 1 – 4 N E T W O R K F U N C T I O N S A N D

C O N V O L U T I O N ( S E C T . 1 1 – 6 )
(a) Given the impulse response of a linear circuit, use the convo-

lution integral to find the response to a specified input.
(b) Use the convolution integral to derive properties of linear

circuits.
See Examples 11–16, 11–17, 11–18, 11–19 and Exercises 11–19,
11–20, 11–21, 11–22.

11–48 The impulse response of a linear circuit is h(t)¼ u(t). Use
the convolution integral to find the response due to an input
x(t) ¼ u(t).

11–49 The impulse response of a linear circuit is h(t) ¼ [u(t) �
u(t � 3)]. Use the convolution integral to find the response
due to an input x(t) ¼ u(t � 3).

11–50 The impulse response of a linear circuit is h(t) ¼ [u(t) �
u(t � 1)]. Use the convolution integral to find the response
due to an input x(t) ¼ u(t) � u(t � 1).

11–51 The impulse response of a linear circuit is h(t) ¼ t [u(t) �
u(t � 1)]. Use the convolution-integral to find the response
due to an input x(t) ¼ u(t � 1).

11–52 The impulse response of a linear circuit is h(t) ¼ e�tu(t).
Use the convolution integral to find the response due to an
input x(t) ¼ u(t).

11–53 The impulse response of a linear circuit is h(t) ¼
10 [u(t) � u(t � 1)]. Use the convolution integral to find
the response due to an input x(t) ¼ e�tu(t).

11–54 The impulse response of a linear circuit is h(t) ¼ e�tu(t).
Use the convolution integral to find the response due to an
input x(t) ¼ tu(t).

11–55 Show that f(t) 
 d(t) ¼ f(t). That is, show that convolving
any waveform f(t) with an impulse leaves the waveform
unchanged.

11–56 Show that if h(t) ¼ u(t), then output y(t) for any input

x(t) is y(t) ¼ Rt
0

xðtÞdt.
That is, a circuit whose impulse response is a step function
operates as an integrator.

11–57 Use the convolution integral to show that if the input to a
linear circuit is x(t) ¼ u(t) then

yðtÞ ¼ gðtÞ ¼
Z t

0

hðtÞdt

That is, show that the step response is the integral of the
impulse response.

11–58 If the input to a linear circuit is x(t) ¼ tu(t), then the
output y(t) is called the ramp response.

Use the convolution integral to show that

dyðtÞ
dt

¼
Z t

0

hðtÞdt ¼ gðtÞ

That is, show that the derivative of the ramp response is the
step response.

11–59 The impulse response of a linear circuit is h(t) ¼ 2u(t).
Use MATLAB to compute theconvolution integral and find
the response due to an input x(t) ¼ t[u(t) � u(t � 1)].

11–60 The impulse response of a linear circuit is h(t) ¼ 50 e�5t

u(t) and x(t) ¼ tu(t). Use s-domain convolution to find the
zero-state response y(t).
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11–61 The impulse responses of two linear circuits are h1(t) ¼
2e�2tu(t) and h2(t) ¼ 5e�5tu(t). What is the impulse response
of a cascade connection of these two circuits?

O B J E C T I V E 1 1 – 5 N E T W O R K F U N C T I O N D E S I G N

( S E C T . 1 1 – 7 )
(a) Design alternative circuits that realize a given network

function and meet other stated constraints.
(b) Use software to visualize and simulate alternative designs.
(c) Evaluate alternative designs using stated criteria and select

the best design.
See Examples 11–20, 11–21, 11–22, 11–23, 11–24, 11–25, 11–26
and Exercises 11–23, 11–24, 11 -25, 11–26, 11–27, 11–28, 11–29,
11–30, 11–31, 11–32.

11–62 Design a circuit to realize the transfer function below
using only resistors, capacitors, and OP AMPs.

TVðsÞ ¼ 20000

s þ 100000

Scale the circuit so that all capacitors are exactly 1000 pF.

11–63 Design a circuit to realize the transfer function below
using only resistors, capacitors, and OP AMPs.

TVðsÞ ¼ 20000

s þ 1000

Scale the circuit so that all resistors are exactly 1 kV.

11–64 Design a circuit to realize the transfer function below
using only resistors, inductors, and OP AMPs.

TVðsÞ ¼ s þ 5000

s

Scale the circuit so that all inductors are exactly 100 mH.

11–65 Design a circuit to realize the transfer function below
using only resistors, capacitors, and OP AMPs.

TVðsÞ ¼ �50000s

ðs þ 2500Þ
Scale the circuit so that all capacitors are exactly 0.1 mF.

11–66 Design a circuit to realize the transfer function below
using only resistors, capacitors, and OP AMPs.

TVðsÞ ¼ 50000s

ðs þ 50Þðs þ 1000Þ
Scale the circuit so that all capacitors are exactly 0.1 mF.

11–67 Design a circuit to realize the transfer function below
using only resistors, capacitors, and OP AMPs. Scale the
circuit so that all resistors are greater than 10 kV and all
capacitors are less the 1 mF.

TVðsÞ ¼ � 5 � 108

ðs þ 100Þðs þ 10;000Þ

11–68 Design a circuit to realize the transfer function
below using only resistors, capacitors and not more than

one OP AMP. Scale the circuit so that all capacitors are
exactly 0.01 mF.

TVðsÞ ¼ � 100ðs þ 1000Þ
ðs þ 100Þðs þ 10;000Þ

11–69 Design a circuit to realize the transfer function below
using only resistors, capacitors and not more than one OP
AMP. Scale the circuit so that the final design uses only
20-kV resistors.

TVðsÞ ¼ � 20;000s

ðs þ 1000Þðs þ 5000Þ

11–70 Design a passive circuit to realize the transfer func-
tion below using only resistors, capacitors, and inductors.
Scale the circuit so that all inductors are 50 mH or less.

TVðsÞ ¼ s2

ðs þ 2000Þ2

11–71 A circuit is needed to realize the transfer function
listed below.

TVðsÞ ¼ � ðs þ 125Þðs þ 500Þ
ðs þ 250Þðs þ 1000Þ

(a) Design the circuit using two OP AMPs.
(b) Design the circuit using only one OP AMP.
(c) Design the circuit using no OP AMPs.

In all cases, scale the circuit so that all parts use practical
values.

11–72 Design a circuit to realize the transfer function below
using only resistors, capacitors, and OP AMPs. Use only
values from the inside rear cover. Your design must be within
�10% of the desired response.

TVðsÞ ¼ � 500ðs þ 100Þ
sðs þ 10000Þ

11–73 A circuit is needed to realize the impulse response
transform listed below. Scale the circuit so that all parts use
practical values.

HðsÞ ¼ � 200s þ 106

s2 þ 200s þ 106

11–74 It is claimed that both circuits in Figure P11–74
realize the transfer function

TVðsÞ ¼ K
s þ 2000

s þ 1000

� �

(a) Verify that both circuits realize the specified TV(s).
(b) Which circuit would you choose if the output must drive
a 1 kV load?
(c) Which circuit would you choose if the input comes from a
50 V. source?
(d) It is further claimed that connecting the two circuits in
cascade produces an overall transfer function of [TV(s)]

2 no
matter which circuit is the first stage and which is the second
stage. Do you agree or disagree? Explain.
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+
−

+

0.05 μF

v2(t)
+

v1(t)
�

10 kΩ

0.1 μF

10 kΩ

+
v2(t)

+
v1(t)

10 kΩ

10 kΩ

− −

FIGURE P11–74

11–75 It is claimed that both circuits in Figure P11–75
realize the transfer function

TVðsÞ ¼ �1000s

ðs þ 1000Þðs þ 4000Þ

(a) Verify that both circuits realize the specified TV(s).
(b) Which circuit would you choose if the output must drive
a 1 kV load?
(c) Which circuit would you choose if the input comes from a
50 V source?
(d) It is further claimed that connecting the two circuits in
cascade produces an overall transfer function of [TV(s)]

2 no
matter which circuit is the first stage and which is the second
stage. Do you agree or disagree? Explain.

0.1 μF

+

−

+

10 kΩ

v2(t)

0.025 μF10 kΩ

+

v1(t)
−

+

0.025 μF20 kΩ

+

10 kΩ
v1(t)
−

0.05 μF

v2(t)
−

FIGURE P11–75

11–76 Design a circuit that produces the following step
response.

gðtÞ ¼ 24½1� e�50t � 50te�50t�uðtÞ

11–77 A circuit is needed that will take an input of v1(t) ¼
25 e�10tu(t) mV and produce an output of v2(t) ¼ 500 e�200t

u(t) mV. Design such a circuit using practical parts values.
Validate your design by using OrCAD.

11–78 A circuit is needed that will take an input of v1(t) ¼
[1� e�10,000t] u(t) V and produce a constant �5 V output.
Design such a circuit using practical parts values. Validate
your design using OrCAD.

I N T E G R A T I N G P R O B L E M S
11–79 First-Order Circuit Impulse and Step Responses ,

Each row in the table shown in Figure P11–79 refers to a
first-order circuit with an impulse response h(t) and a step
response g(t). Fill in the missing entries in the table.

h(t)Circuit

R

1
αR

+

−

+

−
v1(t) v2(t)

g(t)

δ(t) − [α e−αt]u(t)

(1 + e
−αt) u(t)
2

FIGURE P11–79

11–80 OPAMP Modules and Loading
Figure P11–80 shows an interconnection of three basic OP

AMP modules.

+

−
+

−

10 kΩ 10 kΩ 10 kΩ 10 kΩ

10 kΩ

10 kΩ

0.1 μF

1000 pF
+

v2(t)

+
v1(t)

+

−

1st stage

2nd stage

3rd stage

10 kΩ

FIGURE P11–80
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(a) Does this interconnection involve loading?

(b) Find the overall transfer function of the interconnection
and locate its poles and zeros.

(c) Find the steady-state output v2(t) when the input is
v1(t) ¼ cos 500t V. Repeat for v1(t) ¼ cos 10 kt Vand again
for v1(t) ¼ cos 200 kt V.

(d) Can you think of a use for this circuit?

11–81 OPAMP Modules and Stability
Figure P11–81 shows an interconnection of three basic

circuit modules. Does this interconnection involve loading?
Find the overall transfer function of the interconnection and
locate its poles and zeros. Is the circuit stable?

+
−

R

R

R

R
R

1/Cs
1/Cs

+

−

+

− +
V2(s)

V1(s)

1st stage 2nd stage 3rd stage

FIGURE P11–81

11–82 Step Response and Fan-Out
The fan-out of a digital device is defined as the maximum

number of inputs to similar devices that can be reliably
driven by the device output. Figure P11–82 is a simplified

Driver
Interconnect

Loads

1

2

n

C

Loads

1

2

n

C

C

R

+
−vS(t)

FIGURE P11–82

diagram of a device’s output driving n identical capacitive
inputs. To operate reliably, a 5-V step function at the device
output must drive the capacitive inputs to 3.7 V in 10 ns or
less. Determine the device fan-out forR¼ 1 kV andC¼ 3 pF.

11–83 Designing to Specifications
A particular circuit needs to be designed that has the

following transfer function requirements: Poles at s ¼ �100
and s¼�10,000; zeros at s¼ 0 and s¼�1000; and a gain of 10
as s ! 1. Find the circuit’s transfer function and use
MATLAB to plot its step response. Then design a circuit
that will meet that requirement. Finally, use OrCAD to
validate that your circuit has the same step response as found
using MATLAB.

11–84 Comparison of Sinusoidal Steady-State Analysis versus
Phasor Analysis

A circuit designer often is faced with deciding which
analysis technique to use when attempting to solve a circuit
problem. In this problem we will look at the circuit in
Figure P11–84 and choose which technique is the better
one to use for different analysis scenarios. Explain why
you selected the technique you did.
(a) You need to calculate the circuit’s transfer function
TV(s) ¼ V2(s)/V1(s).

(b) The input is given as v1(t)¼ 5 cos 1000tVand you need to
find v2SS(t).

(c) The input is given as v1(t)¼ 5 cos 1000tVand you need to
find iX(t).

(d) The input is given as v1(t) ¼ VA cos vtVand you need to
find v2SS(t).

(e) The input is given as v1(t) ¼ 170 cos 377t Vand you need
to find all of the voltages and currents in the circuit.

(f) You need to find the poles and zeros of the circuit.

(g) You need to find if the current leads or lags the voltage
across the two resistors when the input is 5 cos 1000t V.

(h) You need to determine what type of filtering the circuit
performs.

(i) You need to select a load for maximum power when the
input is v1(t) ¼ 170 cos 377t V.

+

v1(t)

−

+

v2(t)

−

1 μF 1 μF
iX(t)

2 kΩ 1 kΩ1 H

FIGURE P11–84
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